注册 登录  
 加关注
   显示下一条  |  关闭
温馨提示!由于新浪微博认证机制调整,您的新浪微博帐号绑定已过期,请重新绑定!立即重新绑定新浪微博》  |  关闭

数据挖掘与数据分析

个人微信:datamen 欢迎交流

 
 
 

日志

 
 

贝叶斯网络技术简介  

2008-04-24 15:55:37|  分类: 统计 |  标签: |举报 |字号 订阅

  下载LOFTER 我的照片书  |

             在日常生活中,人们往往进行常识推理,而这种推理通常是不准确的。例如,你看见一个头发潮湿的人走进来,你可能会认为外面下雨了,那你也许错了;如果你在公园里看到一男一女带着一个小孩,你可能会认为他们是一家人,你可能也犯了错误。在工程中,我们也同样需要进行科学合理的推理。但是,工程实际中的问题一般都比较复杂,而且存在着许多不确定性因素。这就给准确推理带来了很大的困难。很早以前,不确定性推理就是人工智能的一个重要研究领域。尽管许多人工智能领域的研究人员引入其它非概率原理,但是他们也认为在常识推理的基础上构建和使用概率方法也是可能的。为了提高推理的准确性,人们引入了概率理论。最早由Judea Pearl于1988年提出的贝叶斯网络实质(Bayesian Network)上就是一种基于概率的不确定性推理网络。它是用来表示变量集合连接概率的图形模型,提供了一种表示因果信息的方法。当时主要用于处理人工智能中的不确定性信息。随后它逐步成为了处理不确定性信息技术的主流,并且在计算机智能科学、工业控制、医疗诊断等领域的许多智能化系统中得到了重要的应用。

贝叶斯理论是处理不确定性信息的重要工具。作为一种基于概率的不确定性推理方法,贝叶斯网络在处理不确定信息的智能化系统中已得到了重要的应用,已成功地用于医疗诊断、统计决策、专家系统等领域。这些成功的应用,充分体现了贝叶斯网络技术是一种强有力的不确定性推理方法

一、贝叶斯网络定理

贝叶斯网络是一种概率网络,它是基于概率推理的图形化网络,而贝叶斯公式则是这个概率网络的基础。让我们先来看一看贝叶斯基本公式:

  1. 条件概率

    是两个事件,且,称

    为在事件发生的条件下事件发生的条件概率。

  2. 联合概率

    是两个事件,且,它们的联合概率为:

  3. 全概率公式

    设试验的样本空间为的事件,,…,为E的一组事件,满足:①;②,…,互不相容;③。则有全概率公式:

  4. 贝叶斯公式

根据1、2和3,很容易推得众所周知的贝叶斯公式:

二、贝叶斯网络的拓扑结构

贝叶斯网络是一个具有概率分布的有向弧段(DAG)。它是由节点和有向弧段组成的。节点代表事件或变量,弧段代表节点之间的因果关系或概率关系,而弧段是有向的,不构成回路。

图1所示为一个简单的贝叶斯网络模型。它有5个节点和5个弧段组成。图中没有输入的A1节

点称为根节点,一段弧的起始节点称为其末节点的母节点,而后者称为前者的子节点。

图1 简单的贝叶斯网络模型

贝叶斯网络能够利用简明的图形方式定性地表示事件之间复杂的因果关系或概率关系,在给定某些先验信息后,还可以定量地表示这些关系。网络的拓扑结构通常是根据具体的研究对象和问题来确定的。目前贝叶斯网络的研究热点之一就是如何通过学习自动确定和优化网络的拓扑结构。

三、条件独立性假设

条件独立性假设是贝叶斯网络进行定量推理的理论基础。有了这个假设,就可以减少先验概率的数目,简化计算和推理过程。

贝叶斯网络的条件独立性假设的一个很重要的判据就是著名的分隔定理(d-separation)。我们先来看看这个定理。

设A、B、C为网络节点中三个不同的子集,当且仅当A与C间不存在以下情况的路径时,我们称B隔离了A和C,记为<A|B|C>D:

  1. 所有含有聚合弧段的节点或其子节点是B的元素;

  2. 其它节点不是B的元素。

同时满足以上两个条件的路径称作激活(active)路径,否则叫作截断(blocked)路径。这个判据指出,如果B隔离了A和C时,那么可以认为A与C是关于B条件独立的,即:

四、先验概率的确定和网络推理算法

有了条件独立性假设就可以大大简化网络推理计算。但是,与其他形式的不确定性推理方法一样,贝叶斯网络推理仍然需要给出许多先验概率,它们是根节点的概率值和所有子节点在其母节点给定下的条件概率值。

这些先验概率,可以是由大量历史的样本数据统计分析得到的,也可由领域专家长期的知识或经验总结主观给出的,或者根据具体情况事先假设给定。

与其它算法一样,贝叶斯网络推理算法大致也可分为精确算法和近似算法两大类。

理论上,所有类型的贝叶斯网络都可以用精确算法来进行概率推理。但Cooper指出,贝叶斯网络中的精确概率推理是一个N-P难题。对于一个特定拓扑结构的网络,其复杂性取决于节点数。所以,精确算法一般用于结构较为简单的单联网络(Single connected)。对于解决一般性的问题,我们不希望它是多项式次复杂。因而,许多情况下都采用近似算法。它可以大大简化计算和推理过程,虽然它不能够提供每个节点的精确概率值。

  评论这张
 
阅读(652)| 评论(0)
推荐 转载

历史上的今天

评论

<#--最新日志,群博日志--> <#--推荐日志--> <#--引用记录--> <#--博主推荐--> <#--随机阅读--> <#--首页推荐--> <#--历史上的今天--> <#--被推荐日志--> <#--上一篇,下一篇--> <#-- 热度 --> <#-- 网易新闻广告 --> <#--右边模块结构--> <#--评论模块结构--> <#--引用模块结构--> <#--博主发起的投票-->
 
 
 
 
 
 
 
 
 
 
 
 
 
 

页脚

网易公司版权所有 ©1997-2017